Spinal Muscular Atrophy: Updates in diagnosis and management

- Diana X. Bharucha-Goebel, M.D., Neurology
- Sally Evans, M.D., Physical Medicine and Rehabilitation Children's National Health System

Objectives

- What is SMA?
 - Pathophysiologic and genetic mechanisms
 - How to identify a case of SMA
- ❖ What can be done?
 - Review of advances in standards of care and treatment
 - Detailed review of treatment available regionally
- What to do if you have a suspected case?
 - How to refer a patient?
 - How to counsel a patient/ family?
 - Urgency of referral

What is Spinal Muscular Atrophy?

- Autosomal recessive pediatric onset neurodegenerative disease
- Deletions (mutation) in 5q13 SMN1 gene 'Survival of the motor neuron gene'

- SMN protein is important for motor neuron health and survival
 - Progressive loss of alpha motor neurons in the anterior horn cell of spinal cord
- Incidence 1:10,000
- Carrier frequency about 1:35 in the Caucasian population **
 - ** May be even higher because we may miss:
 - Asymptomatic individuals
 - Embryonic lethal subjects

Truncated SMN protein (only 282 aa) is unstable and nonfunctional

SMN2 gene allows for rescue (from embryonic lethality)

Less efficient = each copy produces about 10-15% full length protein compared to SMN1 gene

Children's National ...

SMA Subtypes

The more SMN2 copies you have, the better....

Туре	Frequency	SMN2 Copy	Age Onset	Max Motor	Survival	Comorbidities
0	<1 %	1	Prenatal	Never sit	< 6 mo	Respiratory failure Dysphagia Contractures Decreased fetal movement
1	50-60 %	2,3	0–6 mo	Never sit	< 2 yr	Respiratory failure Dysphagia Weak cough Paradoxical breathing Contractures Severe weakness
2	30 %	2,3,4	<18 mo	Sit	> 2 yr/Adult	Respiratory insufficiency Weak cough Tremor Scoliosis Contractures Weakness
3	10 %	3–4	18 mo – 21 yr	Walk	Adult	Variable weakness Joint contractures Scoliosis
4	1 %	4+	Late childhood-Adult	Walk	Adult	Mild weakness

SMA Type 1 (Werdnig-Hoffman Disease)

- Disease onset within first 6 months of life
- Muscle weakness, hypotonia, areflexia in limbs and trunk
- Clinical course:
 - Impaired head control (neck weakness)
 - Unable to sit or walk
 - Weak cry and cough
 - Difficulty with swallowing, feeding, and handling of oral secretions (before 1 year of age)
 - Die (or require > 16 hrs respiratory support) within first 2 years of life due to bulbar dysfunction or pulmonary complications

SMA Type 2

- Intermediate Form
- Symptom onset <u>after 6 months old</u>
- Clinical Course:
 - Achieve sitting, but never able to walk unaided
 - Bulbar weakness; swallowing difficulties can lead to poor weight gain
 - Intercostal muscle weakness → weak cough, difficulty clearing secretions
 - Fine tremors with extended fingers or when attempting hand grips
 - Kyphoscoliosis develops requiring bracing or spinal surgery
 - Joint contractures over years
 - Lack of DTRs in about 70% of patients
 - Survival > 2 years

SMA Type 3 (Kugelberg-Welander Disease)

- Able to sit and <u>walk</u> (some lose ability to walk in childhood)
- Presenting Features:
 - Difficulties ascending and descending stairs at 2-3 years of age
 - Proximal Muscle weakness
 - Lower extremities more severely affected than upper extremities
 - Reduced or absent DTRs
 - Onset < 3 years Type 3a</p>
 - 44 % maintained walking by age 20 years
 - 22% maintained walking by age 40 years
 - Onset > 3 years Type 3b
 - 90% maintained walking by age 20 year
 - 58% maintained walking by age 40 years
- Scoliosis can develop
- Swallowing, cough, and nocturnal hypoventilation (may occur)
- Muscle aches and joint overuse symptoms are common

Spinal Muscular Atrophy:

Making the Diagnosis

DNA Testing for SMA – 1st line

- SMN gene deletion test (Athena, Quest, Invitae)
 - Via molecular genetic PCR-based testing (2-3 weeks for result; now quicker)
 - 95% sensitivity, 100% specificity
 - 95% will have homozygous deletions of SMN1
 - 90% homozygous absence of exons 7 and 8
 - 10% show homozygous absence of exon 7 but not 8
 - $^{\sim}$ 4% of SMA patients exhibit intragenic *SMN1* mutations instead of deletion
- <u>EMG</u> → less used as first line; possibly more in later onset cases
- Prenatal diagnosis:
 - Carrier testing/ screening in expectant mother
 - Via CVS (10-12th week GA) or Amniocentesis (14-16th week GA)

hildren's National ...

Spinal Muscular Atrophy:

Updates in Management

History

Management – Supportive Care

• First line:

- Clinicians can improve survival by optimal management of respiratory, nutritional, orthopedic health
- Even in era of new drugs available

 This has dramatically improved since 2007 standard of care document by Wang et al.

 Referral for care to a specialized neuromuscular clinical program (Muscular Dystrophy Association/ MDA Clinical Program)

Drug Development

Drug Development Pipeline

Clinical Trials

- Olesoxime: Cholesterol-oxime: NCT02628743
 - Targets mitochondrial integrity in stressed cells → promote motor neuron survival
 - Safe and well tolerated 2 year study
 - 160 patients with Type 2 and nonambulant Type 3 ages 3-25 yrs
 - Primary endpoint not met, secondary endpoint suggests this may maintain motor function in patients with Type 2 or Type 3 SMA over 24 month period
- Roche/ PTC: RG7800/
 - Selectively modulates inclusion of SMN2 exon 7 → orally bioavailable
 - Phase I safe in HV
 - Phase Ib/IIa randomized placebo control trial in adults and pediatric SMA patients → suspended due to unexpected eye condition
 - Modified compound: <u>RG7916/ R07034067</u> →
 - Phase I/II studies in infants with:
 - Type 1 SMA (NCT02913482)
 - Type 2 and Type 3 SMA patients (NCT02908685)

Clinical Trials

- Cytokinetics/ Astellas: CK-107/CK-2127107: NCT 02644668
 - Skeletal muscle troponin activator → slow calcium release → increased skeletal muscle contractility → enhance performance
 - Completed Phase I study in HV
 - In Phase 2 DB/PC/ multi-dose study in patients with Types 2,3 and 4 SMA
- Avexis: Gene Replacement: AVXS101 (AAV9)
 - Strong preclinical data in mice (improved motor function, survival, weight, gene expression)
 - Strong phase I clinical data: Type 1 SMA (2 copies SMN2)

Mean age treatment 6.3 months

Outcomes:

- 11 sat unassisted
- 9 rolled over
- 11 fed orally and could speak
- 2 walked independently

Clinical Trials: Gene Replacement: Enrolling

- Pre-Symptomatic Study of Intravenous AVXS-101 in Spinal Muscular Atrophy (SMA) for Patients With Multiple Copies of SMN2 (SPR1NT): NCT03505099
 - Pre-symptomatic Type 1, 2 or 3 SMA (2,3 or 4 copies SMN2); intravenous
- Study of Intrathecal Administration of AVXS-101 for Spinal Muscular Atrophy (STRONG): NCT03381729
 - Type 2 SMA (3 copies SMN2); intrathecal
- Gene Replacement Therapy Clinical Trial for Patients With Spinal Muscular Atrophy Type 1 (STR1VE): NCT03306277
 - Type 1 SMA (2 copies SMN2); intravenous

A rapidly evolving space for research and therapeutic development...

Approved Therapeutics

Antisense Oligonucleotide ('ASO') (Nusinersen – Biogen/ Ionis)

 Goal – Manipulate RNA sequences to <u>increase exon-7</u> <u>incorporation</u> during SMN2 RNA processing > <u>therefore increase FL-SMN</u>

- Need drug that can have effect within the CNS
- ASO's do not cross BBB

 With IT delivery – can get ASO's distributed into neurons, microglial cells, and astrocytes

Trials

- Double blind controlled clinical trial in 121 patients with SMA type 1 dosed
 7 months of age:
 - IT administration
 - Analysis in 82 patients showed motor improvement in 40% of patients on treatment vs none in sham group
 - Trial halted, all patients rolled into open label extension
- Study in presymptomatic patients with 2 or 3 copies of SMN2 showed favorable results
- FDA approval December 2016

Spinraza ® (nusinersen)

- Antisense oligonucleotide
- Modifies the transcription of *SMN2* to produce a full-length SMN protein.
- Only effective for SMA caused by deletions/ point mutations of SMN1
- Approved for use in patients of all ages with 5q SMA
- Given via intrathecal injection, 12 mg (in 5 mL solution) single dose vial
- Induction phase, then maintenance every 4 months for life

Treatment

- Genetic Testing
- Baseline evaluation with laboratory testing
- Clinical documentation and consent for treatment/financial review
- Payer authorization
- White bag process for drug acquisition
- Scheduling (!)
- Loading doses
 - Weeks 1,3,5,9
 - Safety labs
 - Biobanking
- Multidisciplinary f/u
- Maintenance dosing every 4 months

Spinraza ® (nusinersen) at Children's National

- 32 patients on drug (8 Type 1, 10 Type 2, 14 Type 3 SMA patients)
- 28 in maintenance, 3 in loading, 1 awaiting first loading dose
- 1 international patient
- One of largest injecting sites in region (total 164 injections)
- One of earliest sites to initiate clinical dosing of Spinraza in 3/2017
- Tracking motor function, respiratory function, speech/ communication, and biomarkers
- All patients showing subjective and objective functional gains; better tolerance to respiratory infections; increased energy; improved motor milestones
- 1 prenatally diagnosed patient → prenatal referral → baby seen immediately postnatally, predicted type 2 or type 3 SMA → Dosed by 5 weeks of life

Cure SMA Center Designation - 2018

Patient Management

- Medical treatment: Spinraza
- Nutrition: swallow, feeding, fluids, calories
- Respiratory: adequate ventilation and pulmonary toilet
- Communication: dysarthria, phonation, devices
- Self Care: occupational therapy, adaptive equipment
- Mobility: physical therapy, mobility devices +/power
- Positioning: joint integrity, scoliosis

When to Treat?

- Based on electrodiagnostic studies in pre-symptomatic patients (Finkel R. 2012, Swaboda K. 2005):
 - Early preservation of the motor unit
 - Precipitous drop
 - Then more gradual decline
- There may be a <u>critical window for treatment</u> based upon natural history and timing of motor neuron loss
 - This is further reinforced by trial data
 - EARLIER IS BETTER!!!
- Benchmark for prenatally/ NBS neonatally identified cases:
 - Predicted Type 1 SMA: Dose within 3-4 weeks of life
 - Predicted Type 2 or Type 3 SMA: Dose within 2 months of life

Take Home Points

 When to suspect SMA?.... Weakness, hypotonia, areflexia, tongue fasciculations, fine tremor (on reaching), relative facial sparing

 What to do?..... Referral to neuromuscular specialist Children's National Health System:

Neuromuscular Coordinator:

Kathleen Smart: 202-476-6193

ksmart@childrensnational.org

- Counseling/information?.... <u>www.curesma.org</u>
- When to treat?.... Earlier is better!!

Thanks!

- ksmart@childrensnational.org ***1st contact****
 - Neuromuscular/ MDA/ Cure SMA coordinator

- dbharuch@childrensnational.org
 - Neuromuscular Neurology, Co-director Cure SMA Center
- shevans@childrensnational.org
 - Chief, Physical Medicine & Rehabilitation, Co-director
 Cure SMA Center

References

- Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, lannaccone ST. Drug treatment for spinal muscular atrophy types II and III. The Cochrane Collaboration. 2009 and 2012.
- Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnology. 2010;28:271-276.
- Kaufmann P, McDermott MP, Darras BT, et al. Prospective cohort study of spinal musuclar atrophy types 2 and 3. Neurology 2012;79:1889-1897.
- Kissel JT, Scott CB, Reyna SP, et al. SMA CARNI-VAL Trial Part II: A prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with Spinal muscular atrophy. Plos ONE 2011; 6 (7):e21296.
- Kolb SJ and Kissel JT. Spinal muscular atrophy. Arch Neurol. 2011; 68: 979-984.
- Porensky PN and Burghes AHM. Antisense oligonucleotides for the treatment of spinal muscular atrophy. Human Gene Therapy. 2013.
- Rigo F, Hua Y, Krainer AR, Bennett CF. Antisense-based therapy for the treatment of spinal muscular atrophy. J Cell Biol. 2012;199:21-25.
- Sproule DM and Kaufmann P. Therapeutic developments in spinal muscular atrophy. Ther Adv Neurol Disord. 2010; 3: 173-185.
- Swaboda KJ, Scott CB, Crawford TO, et al. SMA CARNI-VAL Trial Part I: Double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. Plos ONE. 2010;5:e12140.
- Wirth B, Brichta L, and Hahnen E. Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol. 2006; 13:121-131.
- Zhou H, Janghra N, Mitrpant C, et al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Human Gene Therapy. 2013;24: 1-12.

